CHAPTER 8
Databases

PHP has support for over 20 databases, including the most popular commercial and
open source varieties. Relational database systems such as MySQL, PostgreSQL, and
Oracle are the backbone of most modern dynamic websites. In these are stored shop-
ping-cart information, purchase histories, product reviews, user information, credit
card numbers, and sometimes even web pages themselves.

This chapter covers how to access databases from PHP. We focus on the built-in PHP
Data Objects (or PDO) system, which lets you use the same functions to access any
database, rather than on the myriad database-specific extensions. In this chapter, you’ll
learn how to fetch data from the database, store data in the database, and handle errors.
We finish with a sample application that shows how to put various database techniques
into action.

This book cannot go into all the details of creating web database applications with PHP.
For a more in-depth look at the PHP/MySQL combination, see Web Database Appli-
cations with PHP and MySQL, Second Edition, by Hugh Williams and David Lane
(O’Reilly).

Using PHP to Access a Database

There are two ways to access databases from PHP. One is to use a database-specific
extension; the other is to use the database-independent PDO (PHP Data Objects)
library. There are advantages and disadvantages to each approach.

If you use a database-specific extension, your code is intimately tied to the database
you're using. For example, the MySQL extension’s function names, parameters, error
handling, and so on are completely different from those of the other database exten-
sions. If you want to move your database from MySQL to PostgreSQL, it will involve
significant changes to your code. PDO, on the other hand, hides the database-specific
functions from you with an abstraction layer, so moving between database systems can
be as simple as changing one line of your program or your php.ini file.

203

The portability of an abstraction layer like the PDO library comes at a price, however,
as code that uses it is also typically a little slower than code that uses a native database-
specific extension.

Keep in mind that an abstraction layer does absolutely nothing when it comes to making
sure your actual SQL queries are portable. If your application uses any sort of
nongeneric SQL, you’ll have to do significant work to convert your queries from one
database to another. We will be looking briefly at both approaches to database inter-
faces in this chapter and then look at alternative methods to managing dynamic content
for the Web.

Relational Databases and SQL

A Relational Database Management System (RDBMS) is a server that manages data for
you. The data is structured into tables, where each table has a number of columns, each
of which has a name and a type. For example, to keep track of science fiction books,
we might have a “books” table that records the title (a string), year of release (a number),
and the author.

Tables are grouped together into databases, so a science fiction book database might
have tables for time periods, authors, and villains. An RDBMS usually has its own user
system, which controls access rights for databases (e.g., “user Fred can update database
authors”).

PHP communicates with relational databases such as MySQL and Oracle using the
Structured Query Language (SQL). You can use SQL to create, modify, and query
relational databases.

The syntax for SQL is divided into two parts. The first, Data Manipulation Language
or DML, is used to retrieve and modify data in an existing database. DML is remarkably
compact, consisting of only four actions or verbs: SELECT, INSERT, UPDATE, and DELETE.
The set of SQL commands used to create and modify the database structures that hold
the data is known as Data Definition Language, or DDL. The syntax for DDL is not as
standardized as that for DML, but as PHP just sends any SQL commands you give it
to the database, you can use any SQL commands your database supports.

W8
\

The SQL command file for creating this sample library database is avail-
able in a file called library.sql.

vy

Assuming you have a table called books, this SQL statement would insert a new row:
INSERT INTO books VALUES (null, 4, 'I, Robot', '0-553-29438-5', 1950, 1);

This SQL statement inserts a new row but specifies the columns for which there are
values:

204 | Chapter8: Databases

INSERT INTO books (authorid, title, ISBN, pub_year, available)
VALUES (4, 'I, Robot', '0-553-29438-5', 1950, 1);

To delete all books that were published in 1979 (if any), we could use this SQL
statement:
DELETE FROM books WHERE pub_year = 1979;

To change the year for Roots to 1983, use this SQL statement:
UPDATE books SET pub_year=1983 WHERE title='Roots';

To fetch only the books published in the 1980s, use:
SELECT * FROM books WHERE pub_year > 1979 AND pub year < 1990;

You can also specify the fields you want returned. For example:
SELECT title, pub_year FROM books WHERE pub_year > 1979 AND pub_year < 1990;
You can issue queries that bring together information from multiple tables. For exam-

ple, this query joins together the book and author tables to let us see who wrote each
book:

SELECT authors.name, books.title FROM books, authors
WHERE authors.authorid = books.authorid;

You can even short-form (or alias) the table names like this:
SELECT a.name, b.title FROM books b, authors a WHERE a.authorid = b.authorid;

For more on SQL, see SQL in a Nutshell, Third Edition, by Kevin Kline (O’Reilly).

PHP Data Objects
The php.net website had this to say about PDO:

The PHP Data Objects (PDO) extension defines a lightweight, consistent interface for
accessing databases in PHP. Each database driver that implements the PDO interface can
expose database-specific features as regular extension functions. Note that you cannot
perform any database functions using the PDO extension by itself; you must use a da-
tabase-specific PDO driver to access a database server.

PDO has (among others) these unique features:

* PDO is a native C extension.

* PDO takes advantage of the latest PHP 5 internals.

* PDO uses buffered reading of data from the result set.

* PDO gives common DB features as a base.

* PDO is still able to access DB-specific functions.

* PDO can use transaction-based techniques.

* PDO can interact with LOBS (Large Objects) in the database.

* PDO can use prepared and executable SQL statements with bound parameters.

Relational Databases and SQL | 205

* PDO can implement scrollable cursors.

* PDO has access to SQLSTATE error codes and has very flexible error handling.

Since there are a number of features here, we will only touch on a few of them to show
you just how beneficial PDO can be.

First, a little about PDO. It has drivers for almost all database engines in existence, and
those drivers that PDO does not supply should be accessible through PDO’s generic
ODBC connection. PDO is modular in that it has to have at least two extensions enabled
to be active: the PDO extension itself and the PDO extension specific to the database
to which you will be interfacing. See the online documentation to set up the connections
for the database of your choice here. As an example, for establishing PDO on a Win-
dows server for MySQL interaction, simply enter the following two lines into your
php.ini file and restart your server:

extension=php_pdo.dl1l

extension=php_pdo_mysql.dl1l
The PDO library is also an object-oriented extension (you will see this in the code
examples that follow).

Making a connection

The first thing that is required for PDO is that you make a connection to the database
in question and hold that connection in a connection handle variable, as in the following
code:

$db = new PDO ($dsn, $username, $password);
The $dsn stands for the data source name, and the other two parameters are self-ex-
planatory. Specifically, for a MySQL connection, you would write the following code:
$db = new PDO("mysql:host=localhost;dbname=1ibrary", "petermac", "abc123");

Of course, you could (should) maintain the username and password parameters as
variable-based for code reuse and flexibility reasons.

Interaction with the database

So, once you have the connection to your database engine and the database that you
want to interact with, you can use that connection to send SQL commands to the server.
A simple UPDATE statement would look like this:

$db->query("UPDATE books SET authorid=4 WHERE pub_year=1982");

This code simply updates the books table and releases the query. This is how you would
usually send nonresulting simple SQL commands (UPDATE, DELETE, INSERT) to the da-
tabase through PDO unless you are using prepared statements, a more complex ap-
proach that is discussed in the next section.

206 | Chapter8: Databases

PDO and prepared statements

PDO also allows for what are known as prepared statements. This is done with PDO
calls in stages or steps. Consider the following code:

$statement = $db->prepare("SELECT * FROM books");
$statement->execute();

// gets rows one at a time
while ($row = $statement->fetch()) {
print r($row);
// or do something more meaningful with each returned row

}

$statement = null;

In this code, we “prepare” the SQL code and then “execute” it. Next, we cycle through
the result with the while code and, finally, we release the result object by assigning
null to it. This may not look all that powerful in this simple example, but there are
other features that can be used with prepared statements. Now, consider this code:

$statement = $db->prepare("INSERT INTO books (authorid, title, ISBN, pub year)"
. "VALUES (:authorid, :title, :ISBN, :pub year)");

$statement->execute(array(

"authorid' => 4,

"title' => "Foundation",

"ISBN' => "0-553-80371-9",

'pub_year' => 1951)

5

Here, we prepare the SQL statement with four named placeholders: authorid, title,
ISBN, and pub_year. These happen to be the same names as the columns in the database.
This is done only for clarity; the placeholder names can be anything that is meaningful
to you. In the execute call, we replace these placeholders with the actual data that we
want to use in this particular query. One of the advantages of prepared statements is
that you can execute the same SQL command and pass in different values through the
array each time. You can also do this type of statement preparation with positional
placeholders (not actually naming them), signified by a ?, which is the positional item
to be replaced. Look at the following variation of the previous code:

$statement = $db->prepare("INSERT INTO books (authorid, title, ISBN, pub year)"
. "VALUES (2,2,2,2)");

$statement->execute(array(4, "Foundation", "0-553-80371-9", 1951));

This accomplishes the same thing but with less code, as the value area of the SQL
statement does not name the elements to be replaced, and therefore the array in the
execute statement only needs to send in the raw data and no names. You just have to
be sure about the position of the data that you are sending into the prepared statement.

Relational Databases and SQL | 207

Transactions

Some RDBMSs support transactions, in which a series of database changes can be
committed (all applied at once) or rolled back (discarded, with none of the changes
applied to the database). For example, when a bank handles a money transfer, the
withdrawal from one account and deposit into another must happen together—neither
should happen without the other, and there should be no time between the two actions.
PDO handles transactions elegantly with try...catch structures like this one in
Example 8-1.

Example 8-1. The try...catch code structure

try {
$db = new PDO("mysql:host=localhost;dbname=banking sys", "petermac", "abc123");
// connection successful

catch (Exception $error) {

die("Connection failed:

}

try {
$db->setAttribute(PDO: :ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
$db->beginTransaction();

. $error->getMessage());

$db->exec("insert into accounts (account_id, amount) values (23, '5000')");
$db->exec("insert into accounts (account id, amount) values (27, '-5000')");

$db->commit();
}

catch (Exception $error) {
$db->rollback();
echo "Transaction not completed: " . $error->getMessage();

}

If you call commit() or rollback() on a database that doesn’t support transactions, the
methods return DB_ERROR.

Be sure to check your underlying database product to ensure that it
supports transactions.
)

MySQLi Object Interface

The most popular database platform used with PHP is the MySQL database. If you
look at the MySQL website (www.mysql.com/) you will discover that there are a few
different versions of MySQL you can use. We will look at the freely distributable version
known as the community server. PHP has a number of different interfaces to this data-
base tool as well, so we will look at the object-oriented interface known as MySQLi,

208 | Chapter8: Databases

a.k.a. the MySQL Improved extension. If you are not overly familiar with OOP inter-
faces and concepts, be sure to review Chapter 6 before you get too deeply into this
section.

Since this object-oriented interface is built into PHP with a standard installation con-
figuration (you just have to activate the MySQLi extension in your PHP environment),
all you have to do to start using it is instantiate its class, as in the following code:

$db = new mysqli(host, user, password, databaseName);

In this example, we have a database named library, and we will use the fictitious
username of petermac and the password of 1q2w3e9i8u7y. The actual code that would
be used is:

$db = new mysqli("localhost", "petermac", "1q2w3e9i8u7y", "library");

This gives us access to the database engine itself within the PHP code; we will specifi-
cally access tables and other data later. Once this class is instantiated into the variable
$db, we can use methods on that object to do our database work.

A brief example of generating some code to insert a new book into the library database
would look something like this:

$db = new mysqli("localhost", "petermac", "1q2w3e9i8u7y", "library");

$sql = "INSERT INTO books (authorid, title, ISBN, pub_year, available)
VALUES (4, 'I, Robot', '0-553-29438-5', 1950, 1)";

if ($db->query($sql)) {
echo "Book data saved successfully.";

else {
echo "INSERT attempt failed, please try again later, or call tech support" ;
}

$db->close();

First, we instantiate the MySQLi class into the variable $db. Next, we build our SQL
command string and save it to a variable called $sql. Then we call the query method
of the class and at the same time test its return value to determine if it was successful
(TRUE) and comment to the screen accordingly. You may not want to echo out to the
browser at this stage, as again this is only an example. Last, we call the close method
on the class to tidy up and destroy the class from memory.

Retrieving Data for Display

In another area of your website, you may want to draw out a listing of your books and
show who their authors are. We can accomplish this by employing the same MySQLi
class and working with the result set that is generated from a SELECT SQL command.
There are many ways to display the information in the browser, and we’ll look at one
example of how this can be done. Notice that the result returned is a different object

MySQLi Object Interface | 209

than the $db that we first instantiate. PHP instantiates the result object for you and fills
it with any returned data. Here is the code:

$db = new mysqli("localhost", "petermac", "1q2w3e9i8u7y", "library");

$sql = "SELECT a.name, b.title FROM books b, authors a
WHERE a.authorid=b.authorid";
$result = $db->query($sql);

while ($row = $result->fetch_assoc()) {
echo "{$row['name']} is the author of: {$row['title']}
";
}

$result->close();

$db->close();

Here, we are using the query method call and storing the returned information into the
variable called $result. Then we are using a method of the result object called
fetch_assoc to provide one row of data at a time, and we are storing that single row
into the variable called $row. This continues while there are rows to process. Within
that while loop, we are dumping content out to the browser window. Finally, we are
closing both the result and the database objects.

The output would look like this:

J.R.R. Tolkien is the author of: The Two Towers

J.R.R. Tolkien is the author of: The Return of The King
J.R.R. Tolkien is the author of: The Hobbit

Alex Haley is the author of: Roots

Tom Clancy is the author of: Rainbow Six

Tom Clancy is the author of: Teeth of the Tiger

Tom Clancy is the author of: Executive Orders

One of the most useful methods to be found in MySQLi is
multi query; this method allows you to run multiple SQL commands in
s the same statement. If you want to do an INSERT and then an UPDATE
" statement based on similar data, you can do it all in one method call,
one step.

We have, of course, just scratched the surface of what the MySQLi class has to offer.
You can find the documentation for the class at www.php.net/mysqli, and you will see
the extensive list of methods that are part of this class. As well, each result class is also
documented within the appropriate subject area at that web address.

210 | Chapter8: Databases

SQLite

New in PHP version 5 is the compact and small database connection called SQLite. As
its name suggests, it is a small and lightweight database tool. This database product
comes with PHP 5 and is now available in PHP by default. SQLite is ready to go right
out of the box when you install PHP, so if you are looking for a lightweight and compact
database tool, be sure to read up on SQLite.

The catch with SQLite is that all the database storage is file-based, and is therefore
accomplished without the use of a separate database engine. This can be very advan-
tageous if you are trying to build an application with a small database footprint and
without product dependencies other than PHP. All you have to do to start using SQLite
is to make reference to it in your code.

E)
\

If you are using PHP 5.3, you may have to update your php.ini file to
include the directive extension=php_sqlite.dll, since at the time of this
* Qlay writing, the default directive of extension=php_sqlite3.d11l does not
" seem to have the same working content.

There isan OOP interface to SQLite, so you can instantiate an object with the following
statement:

$db = new SQLiteDatabase("c:/copy/library.sqlite");

The neat thing about this statement is that if the file is not found at the specified loca-
tion, SQLite creates it for you. Continuing with our library database example, the
command to create the authors table and insert a sample row within SQLite would
look something like Example 8-2.

Example 8-2. SQLite library authors table
$sql = "CREATE TABLE 'authors' ('authorid' INTEGER PRIMARY KEY, 'name' TEXT)";

if (!$database->queryExec($sql, $error)) {
echo "Create Failure - {$error}
";
}
else {
echo "Table Authors was created
";

}

$sql = <<<saL

INSERT INTO 'authors' ('name') VALUES ('J.R.R. Tolkien');
INSERT INTO 'authors' ('name') VALUES ('Alex Haley');
INSERT INTO 'authors' ('name') VALUES ('Tom Clancy');
INSERT INTO 'authors' ('name') VALUES ('Isaac Asimov');
SQL;

if (!$database->queryExec($sql, $error)) {
echo "Insert Failure - {$error}
";

}

sqlite | 211

else {
echo "INSERT to Authors - OK
";

}

Table Authors was created
INSERT to Authors - 0K

In SQLite, unlike MySQL, there is no AUTO_INCREMENT option. SQLite
instead makes any column that is defined with INTEGER and PRIMARY
%ls* KEY an automatically incrementing column. You can override this by
" providing a value to the column when an INSERT statement is executed.

Notice here that the data types are quite different from what we have seen in MySQL.
Remember that SQLite is a trimmed-down database tool and therefore it is “lite” on
its data types; see Table 8-1 for a listing of the data types that SQLite uses.

Table 8-1. Data types available in SQLite

Datatype Explanation

Text Stores data as NULL, TEXT, or BLOB content. If a number is supplied to a text field, it is converted to text before
itis stored.

Numeric (an store either integer or real data. If text data is supplied, an attempt is made to convert the information to
numerical format.

Integer Behaves the same as the numeric data type. However, if data of real format is supplied, it is stored as an integer.
This may affect data storage accuracy.

Real Behaves the same as the numeric data type, except that it forces integer values into floating-point representation.

None This is a catchall data type. This type does not prefer one base type to another. Data is stored exactly as supplied.

Run the following code in Example 8-3 to create the books table and insert some data
into the database file.

Example 8-3. SQLite library books table
$db = new SQLiteDatabase("c:/copy/library.sqlite");

$sql = "CREATE TABLE 'books' ('bookid' INTEGER PRIMARY KEY,
‘authorid' INTEGER,
"title' TEXT,
"ISBN' TEXT,
'pub_year' INTEGER,
"available' INTEGER)";

if ($db->queryExec($sql, $error) == FALSE) {
echo "Create Failure - {$error}
";

}
else {

echo "Table Books was created
";
}

212 | Chapter8: Databases

$sql = <<<SOL
INSERT INTO books ('authorid', 'title', 'ISBN', 'pub year', 'available')
VALUES (1, 'The Two Towers', '0-261-10236-2', 1954, 1);

INSERT INTO books ('authorid', 'title', 'ISBN', 'pub year', 'available')
VALUES (1, 'The Return of The King', '0-261-10237-0', 1955, 1);

INSERT INTO books ('authorid', 'title', 'ISBN', 'pub year', 'available')
VALUES (2, 'Roots', '0-440-17464-3', 1974, 1);

INSERT INTO books ('authorid', 'title', 'ISBN', 'pub year', 'available')
VALUES (4, 'I, Robot', '0-553-29438-5', 1950, 1);

INSERT INTO books ('authorid', 'title', 'ISBN', 'pub_year', 'available')
VALUES (4, 'Foundation', '0-553-80371-9', 1951, 1);
sQL;

if (!$db->queryExec($sql, $error)) {
echo "Insert Failure - {$error}
";

}

else {
echo "INSERT to Books - OK
";

}

Notice here that we can execute multiple SQL commands at the same time. This can
also be done with MySQLI, but you have to remember to use the multi_query method
there; with SQLite, it’s available with the queryExec method. After loading the database
with some data, run the code in Example 8-4 to produce some output.

Example 8-4. SQLite select books
$db = new SQLiteDatabase("c:/copy/library.sqlite");

$sql = "SELECT a.name, b.title FROM books b, authors a WHERE a.authorid=b.authorid";
$result = $db->query($sql);

while ($row = $result->fetch()) {
echo "{$row['a.name']} is the author of: {$row['b.title']}
";
}

The above code produces the following output:

J.R.R. Tolkien is the author of: The Two Towers

J.R.R. Tolkien is the author of: The Return of The King
Alex Haley is the author of: Roots

Isaac Asimov is the author of: I, Robot

Isaac Asimov is the author of: Foundation

SQLite has the capability to do almost as much as the “bigger” database engines, and
the “lite” does not really mean light on functionality; rather, it is light on demand for
system resources. You should always consider SQLite when you require a database that
may need to be more portable and less demanding on resources.

salite | 213

If you are just getting started with the dynamic aspect of web develop-
ment, you can use PDO to interface with SQLite. In this way, you can
Q8¢ start with a lightweight database and grow into a more robust database
" server like MySQL when you are ready.

Direct File-Level Manipulation

PHP has many little hidden features within its vast toolset. One of these features (which
is often overlooked) is its uncanny capability to handle complex files—sure, everyone
knows that PHP can open a file, but what can it really do with that file? What actually
brought the true range of possibilities to my attention was a request from a prospective
client who had “no money,” but wanted a dynamic web survey developed. Of course,
Linitially offered the client the wonders of PHP and database interaction with MySQLI.
Upon hearing the monthly fees from a local ISP, however, the client asked if there was
any other way to have the work accomplished. It turns out that if you don’t want to
use SQLite, another alternative is to use files to manage and manipulate small amounts
of text for later retrieval. The functions we’ll discuss here are nothing out of the ordinary
when taken individually—in fact, they’re really part of the basic PHP toolset everyone
is probably familiar with, as you can see in Table 8-2.

Table 8-2. Commonly used PHP file management functions
Function name Description of use
mkdir () Used to make a directory on the server.

file exists() Used to determine if afile or directory exists at the supplied location.

fopen() Used to open an existing file for reading or writing (see detailed options for correct usage).
fread() Used to read in the contents of a file to a variable for PHP use.

flock() Used to gain an exclusive lock on a file for writing.

furite() Used to write the contents of a variable to a file.

filesize() When reading in afile, this is used to determine how many bytes to read in at a time.
fclose() Used to close the file once its usefulness has passed.

The interesting part is in tying all the functions together to accomplish your objective.
For example, let’s create a small web form survey that covers two pages of questions.
The user can enter some opinions and return at a later date to finish the survey, picking
up right where he or she left off. We’ll scope out the logic of our little application and,
hopetully, you will see that its basic premise can be expanded to a full production-type
employment.

The first thing that we want to do is allow the user to return to this survey at any time
to provide additional input. To do this, we need to have a unique identifier to differ-
entiate one user from another. Generally, a person’s email address is unique (other

214 | Chapter8: Databases

people might know it and use it, but that is a question of website security and/or con-
trolling identity theft). For the sake of simplicity, we will assume honesty here in the
use of email addresses and not bother with a password system. So, once we have the
guest’s email address, we need to store that information in a location that is distinct
from that of other visitors. For this purpose, we will create a directory folder for each
visitor on the server (this, of course, assumes that you have access and proper rights to
alocation on the server that permits the reading and writing of files). Since we have the
relatively unique identifier in the visitor’s email address, we will simply name the new
directory location with that identifier. Once a directory is created (testing to see if the
user has returned from a previous session), we will read in any file contents that are
already there and display them in a <textarea> form control so that the visitor can see
what (if anything) he has written previously. We then save his comments upon the
submission of the form and move on to the next survey question. Here in Exam-
ple 8-5 is the code for the first page (the <?php tags are included here because there are
places where they are turned on and off throughout the listing).

Example 8-5. File-level access
session_start();

if (lempty($_POST['posted']) && !empty($ POST['email'])) {
$folder = "surveys/" . strtolower($ POST['email']);

// send path information to the session
$ SESSION['folder'] = $folder;

if (!file exists($folder)) {
// make the directory and then add the empty files
mkdir($folder, 0777, true);

}

header("Location: 08 6.php");

else { >

<html>
<head>
<title>Files & folders - On-line Survey</title>
</head>

<body bgcolor="white" text="black"»
<h2>Survey Form</h2>
<p>Please enter your e-mail address to start recording your comments</p>
<form action="<?php echo $ SERVER['PHP SELF']; ?>" method="POST">
<input type="hidden" name="posted" value="1">
<p>Email address: <input type="text" name="email" size="45" />

<input type="submit" name="submit" value="Submit"></p>
</form>

Direct File-Level Manipulation | 215

</body>
</html>
<?php }

Figure 8-1 shows the web page that asks the visitor to submit his email address.

Survey Form
Please enter your e-mail address to start recording your comuments

e-mal address:

Figure 8-1. Survey login screen

As you can see, the first thing that we do is open a new session to pass the visitor’s
information on to subsequent pages. Then we perform a test to determine whether the
form further down in the code has indeed been submitted and that there is something
entered in the email address field. If this test fails, the form is simply redisplayed. Of
course, the production version of this functionality would send out an error message
telling the user to enter valid text.

Once this test has passed (assuming the form has been submitted correctly) we create
a $folder variable that contains the directory structure where we want to save the survey
information and append the user’s email address to the end of it; we also save the
contents of this newly created variable ($folder) into the session for later use. Here we
simply take the email address and use it (again, if this were a secure site, we would
protect the data with proper security measures).

Next, we want to see if the directory already exists. If it does not, we create it with the
mkdir() function. This function takes the argument of the path and the name of the
directory we want to create and attempts to create it.

W N

o In a Linux environment, there are other options on the mkdir () function
.“:‘ that control access levels and permissions on the newly created direc-
TN Qs tory, so be sure to look into those options if this applies to your

environment.

After we verify that the directory exists, we simply direct the browser to the first page
of the survey.

216 | Chapter8: Databases

Now that we are on the first page of the survey (see Figure 8-2), the form is ready for use.

Please enter your response to the following survey question:

“What 12 your opiton on the state of the world economy?
Can you help us for it 7

Figure 8-2. The first page of the survey

This, however, is a dynamically generated form, as you can see in the following code
in Example 8-6.

Example 8-6. File-level access, continued

<?php

session start();

$folder = $ SESSION['folder'];

$filename = $folder . "/questioni.txt" ;

$file_handle = fopen($filename, "a+");

// open file for reading then clean it out

// pick up any text in the file that may already be there
$comments = file get contents($filename) ;
fclose($file_handle); // close this handle

if (lempty($_POST['posted'])) {
// create file if first time and then
//save text that is in $ POST['questioni']
$question1 = $_POST['questioni'];
$file_handle = fopen($filename, "w+");
// open file for total overwrite

Direct File-Level Manipulation | 217

if (flock($file handle, LOCK EX)) {
// do an exclusive lock
if (furite($file_handle, $question1) == FALSE) {
echo "Cannot write to file ($filename)";

}
flock($file_handle, LOCK_UN);
// release the lock

}

// close the file handle and redirect to next page ?
fclose($file_handle);
header("Location: page2.php");

} else {

?>

<html>
<head>
<title>Files & folders - On-line Survey</title>
</head>
<body>

<table border=0><tr><td>
Please enter your response to the following survey question:
</td></tr>
<tr bgcolor=lightblue><td>
What is your opinion on the state of the world economy?

Can you help us fix it ?
</td></tr>
<tro<td>
<form action="<?php echo $ SERVER['PHP SELF']; ?>" method=POST>
<input type="hidden" name="posted" value=1>

<textarea name="question1l" rows=12 cols=35><?= $comments ?></textarea>
</td></tr>
<tr><td>
<input type="submit" name="submit" value="Submit">
</form></td></tr>
</table>
<php }

Let me highlight a few of the lines of code here, because this is where the file manage-
ment and manipulation really takes place. After taking in the session information that
we need and adding the filename to the end of the $filename variable, we are ready to
start working with the files. Keep in mind that the point of this process is to display
any information that may already be saved in the file and allow users to enter infor-
mation (or alter what they have already entered). So, near the top of the code you see
this command:

$file_handle = fopen($filename, "a+");

218 | Chapter8: Databases

Using the file opening function, fopen(), we ask PHP to provide us with a handle to
that file and store it in the variable suitably called $file_handle. Notice that there is
another parameter passed to the function here: the a+ option. If you look at the PHP
site (php.net), you will see a full listing of these option letters and what they mean. This
one causes the file to open for reading and writing, with the file pointer placed at the
end of any existing file content. If the file does not exist, PHP will attempt to create it.
If you look at the next two lines of code, you will see that the entire file is read (using
the file get contents() function) into the $comments variable, and then it is closed:

$comments = file get contents($filename);
fclose($file_handle);

Next, we want to see if the form portion of this program file has been executed and, if
so, we have to save any information that was entered into the text area. This time, we
open the same file again, but we use the w+ option, which causes the interpreter to open
the file for writing only—creating it if it doesn’t exist, or emptying it if it does. The file
pointer is then placed at the beginning of the file. Essentially, we want to empty out
the current contents of the file and replace it with a totally new volume of text. For this
purpose, we employ the furite() function:

// do an exclusive lock

if (flock($file_handle, LOCK_EX)) {

if (fwrite($file handle, $questionl) == FALSE){
echo "Cannot write to file ($filename)";
}

// release the lock
flock($file_handle, LOCK UN);
}

We have to be sure that this information is indeed saved into the designated file, so we
wrap a few conditional statements around our file-writing operations to make sure
everything will go smoothly. First, we attempt to gain an exclusive lock on the file in
question (using the flock() function)—this will ensure no other process can access the
file while we’re operating on it. After the writing is complete, we release the lock on
the file. This is merely a precaution, since the file management is unique to the entered
email address on the first web page form and each survey has its own folder location,
so usage collisions should never occur unless two people happen to be using the same
email address.

As you can see, the file write function uses the $file_handle to add the contents of the
$questioni variable to the file. Then we simply close the file when we are finished with
it and move on to the next page of the survey, as shown in Figure 8-3.

Direct File-Level Manipulation | 219

Please enter your response to the following survey question:

It's a funny thing freedom. I mean how can any of us
be really free when we still have personal possessions.
How do vou respond to the previous statement?

Figure 8-3. Page two of the survey

Asyou can see in the following code for page two of the survey, the code for processing
this file in Example 8-7 (called question2.txt) is identical to the previous one except for
its name.

Example 8-7. File-level access, continued

<?php

session start();

$folder = $ SESSION['folder'];

$filename = $folder . "/question2.txt" ;

$file_handle = fopen($filename, "a+");

// open file for reading then clean it out

// pick up any text in the file that may already be there
$comments = fread($file handle, filesize($filename));
fclose($file _handle); // close this handle

if ($_POST['posted']) {
// create file if first time and then save
//text that is in $ POST['question2']
$question2 = $ POST['question2'];
$file_handle = fopen($filename, "w+");
// open file for total overwrite

if (flock($file_handle, LOCK_EX)) { // do an exclusive lock
if (fwurite($file_handle, $question2) == FALSE) {
echo "Cannot write to file ($filename)";

}
flock($file_handle, LOCK_UN); // release the lock

220 | Chapter8: Databases

// close the file handle and redirect to next page ?
fclose($file_handle);
header("Location: last page.php");

} else {

?>

<html>
<head>
<title>Files & folders - On-line Survey</title>
</head>
<body>

<table border=0><tr><td>

Please enter your comments to the following survey statement:
</td></tr>

<tr bgcolor=lightblue><td>

It's a funny thing freedom. I mean how can any of us

be really free when we still have personal possessions.

How do you respond to the previous statement?

</td></tr>

<tr><td>

<form action="<?php echo $ SERVER['PHP SELF']; ?>" method=POST>
<input type="hidden" name="posted" value=1>

<textarea name="question2" rows=12 cols=35><?= $comments ?></textarea>
</td></tr>

<tr><td>

<input type="submit" name="submit" value="Submit">
</form></td></tr>

</table>

<?php } >

This kind of file processing can continue for as long as you like, and therefore your
surveys can be as long as you like. To make it more interesting, you can ask multiple
questions on the same page and simply give each question its own filename. The only
unique item here to point out is that once this page is submitted and the text is stored,
it is directed to a PHP file called last_page.php. This page does not exist in the code
samples, as it is merely a page that would thank the user for their time in filling out the
survey.

Of course, after a few pages, with as many as five questions per page, you may find
yourself with a large volume of individual files needing management. Fortunately, PHP
has other file-handling functions that you can use. The file() function, for example,
is an alternative to the fread() function that reads the entire contents of a file in an
array, one element per line. If your information is formatted properly—with each line
delimited by the end of line sequence \n—you can store multiple pieces of information
in a single file very easily. Naturally, this would also entail the use of the appropriate

Direct File-Level Manipulation | 221

looping controls for handling the creation of the HTML form, as well as recording the
entries into that form.

When it comes to file handling, there are still many more options that you can look at
on the PHP website. If you go to “Filesystem” on page 365 of the Appendix, you will
find a list of over 70 functions—including, of course, the ones discussed here. You can
check to see if a file is either readable or writable with the is_readable() or is writa
ble() functions respectively. You can check on file permissions, free disk space, or total
disk space, and you can delete files, copy files, and much more. When you get right
down to it, if you have enough time and desire, you can even write an entire web
application without ever needing or using a database system.

When the day comes, and it most likely will, that you have a client who does not want
to pay big bucks for the use of a database engine, you will have an alternative approach
to offer them.

MongoDB

The last database type that we will look at is known as a NoSQL type of database.
NoSQL databases are on the rise in popularity because they are also quite lightweight
in terms of system resources, but more importantly, they work outside the typical SQL
command structure. NoSQL DBs are also becoming more popular with mobile devices
like tablets and smartphones for the above two reasons.

One of the frontrunners in the NoSQL database world is known as MongoDB, and it
will be the focus of this last section of the database chapter. We will only be touching
the surface of the MongoDB product here, just to give you a taste of what is possible
with its use. For more detailed coverage of this topic, please refer to MongoDB and
PHP by Steve Francia (O’Reilly).

The first thing to get your head around with MongoDB is that it is not a traditional
database. It has its own setup and its own terminology. Getting used to how to work
with it will take some time for the traditional SQL database user. Table 8-3 is an attempt
at drawing some parallels with “standard” SQL terminology.

Table 8-3. Typical MongoDB/SQL equivalents

Traditional SQLterms MongoDB terms

Database Database
Tables Collections
Rows Documents. No correlation, not like database “rows.” Rather, think of arrays.

It is difficult to draw the equivalent of a database row within the MongoDB paradigm.
It is said one of the best ways to think of the data within a collection is to consider it

222 | Chapter8: Databases

like that of a multidimensional array, and we will see that shortly as we revamp our
library database example here.

If you just want to try Mongo out on your own localhost (recommended for getting
familiar with it), you can use an all-in-one tool like Zend Server CE (zend.com) to set
up a local environment with the Mongo drivers all installed. You will still have to
download the server itself from www.mongodb.org and follow the instructions for
setting up the database server engine for your own local environment.

A very useful web-based tool for browsing Mongo data and manipulating the collec-
tions and documents is known as Genghis. You merely download the project and drop
it into its own folder in the localhost and call genghis.php. If the database engine is
running, it will be picked up and displayed to you. See Figure 8-4 for what this might
look like.

Gengh]'_s localhost | library

Collections
name = documents indexes
authors 4 1
Add collection

Genghis, by Justin Hileman.

Keyboard shortcuts available (=]

Figure 8-4. Genghis MongoDB web interface sample

Now let’s get into some sample code. Take a look at the following code in Exam-
ple 8-8 to see the beginnings of a Mongo database taking shape.

Example 8-8. MongoDB library

$mongo = new Mongo();
$db = $mongo->library;
$authors = $db->authors;

$author = array('authorid' => 1, 'name' => "J.R.R. Tolkien");
$authors->insert($author);

$author = array('authorid' => 2, 'name' => "Alex Haley");
$authors->insert($author);

$author = array('authorid' => 3, 'name' => "Tom Clancy");
$authors->save($author);

MongoDB | 223

$author = array('authorid' => 4, 'name' => "Isaac Asimov");
$authors->save($author);

The first line is the creation of a new connection to the Mongo database engine, and it
creates an object interface to it as well. The next line then connects to the library “col-
lection,” and if this collection does not exist, then Mongo creates it for you (so there is
no need to pre-create a collection in Mongo). We then create an object interface with
the $db connection to the library database and create a “document” where we will store
our author data. The next four groupings of code are adding in data to the authors
document in two different ways. The first two samples are using the insert() method,
and the last two are using the save() method. The only difference between these two
methods is that the save() method will update a value if it is already in the document
and has an existing _id key (more on _id shortly).

Execute this code within a browser and the sample data shown in Figure 8-5 should
appear.

As you can see in Figure 8-3, there is an entity created with the inserted data called
_id. This is the automatic primary key that is assigned to all created collections. If we
wanted to depend on that key—and there is no reason why we shouldn’t (other than
its obvious complexity)—we would not have had to add in our own authorid infor-
mation in the above code.

Retrieving Data

Once the data is stored, we can now start looking at ways in which to access it. The
code listed in Example 8-9 shows one way to do that.

Example 8-9. MongoDB data selection example

$mongo = new Mongo();
$db = $mongo->library;
$authors = $db->authors;

$data = $authors->findone(array('authorid' => 4));

echo "Generated Primary Key: {$data[' id']}
";
echo "Author name: {$data['name']}";

The first three lines of code are the same as before, since we still want to connect to the
same database and make use of the same collection (library) and document (authors).
After that, we use the findone() method, passing it an array containing a unique piece
of data that can be used to find the information that we want, in this case the
authorid for “Isaac Asimov, 4”. We store the returned information into an array called
$data.

224 | Chapter8: Databases

Gengh]'_s localhost | library | authors

4 documents

Add document

4ff43ef45b9eTd300c 000004

{
_d {
$id: "4ff43ef45b9e7d300c000004"
i
authorid: 1,
name: "J.R.R. Tolkien"
}

4ff43ef45b9eTd300c 000005

{
_id{
Bid: "4ff4 3ef45b9e7d300c000005"
L
authorid: 2,
name: "Alex Haley"
}

4ff43ef45b9eTd300c 000006

{
_id{
Bid: "4ff4 3ef45b9e7d300c000006"
L
authorid: 3,
name: "Tom Clancy”
}

Figure 8-5. Sample Mongo document data for authors

N

Remember that it is best to think of the information within a Mongo
document as array-based.

Then we can use that array as we wish to display the returned data from the document.
The following is the resulting output from the above code. Notice the size of the primary
key that Mongo has created.

MongoDB | 225

Generated Primary Key: 4ff43ef45b9e7d300c000007
Author name: Isaac Asimov

Inserting More Complex Data

Next we want to continue our library example database by adding some books to the
documentin relation to a particular author. Here is where the analogy of different tables
within a database can be lost. Consider this code, which adds four books to the authors
document, essentially as a multidimensional array. This code is found in Example 8-10.

Example 8-10. MongoDB simple data update/insert

$mongo = new Mongo();
$db = $mongo->library;
$authors = $db->authors;

$authors->update(
array('name' => "Isaac Asimov"),
array('$set’ =>
array('books' =>
array/(
"0-425-17034-9" => "Foundation",
"0-261-10236-2" => "I, Robot",
"0-440-17464-3" => "Second Foundation",
"0-425-13354-0" => "Pebble In The Sky")
)
)
)
)

Here, after making the needed connections, we use the update() method and use the
first element of the array (the first parameter of the update() method) as the unique
lookup identifier, and the second parameter is using a defined operator called $set to
attach the books’ data to the provided key of the first parameter.

W8
N The special operators of $set and $push (not covered here) should be
.“:‘ researched and fully understood before they are used in a production
T Qs environment. Go here for more information and to see a full listing of

these operators.

Example 8-11 provides another approach to accomplishing the same goal, except that
we are preparing the array to be inserted and attached ahead of time and using the
Mongo-created _id as the location key.

Example 8-11. MongoDB data update/insert

$mongo = new Mongo();
$db = $mongo->library;
$authors = $db->authors;

226 | Chapter8: Databases

$data = $authors->findone(array('name' => "Isaac Asimov"));

$bookData = array(

array(
"ISBN' => "0-553-29337-0",
"title' => "Foundation",
'pub_year' => 1951,
'available' => 1),

array(
"ISBN' => "0-553-29438-5",
"title' => "I, Robot",
"pub_year' => 1950,
'available' => 1),

array(
"ISBN' => "0-517-546671",
"title' => "Exploring the Earth and the Cosmos",
"pub_year' => 1982,
'available' => 1),

array(
"ISBN' => "0-553-29336-2",
"title' => "Second Foundation",
"pub_year' => 1953,
'available' => 1)

);

$authors->update(

array(' id' => $data[' id']),
array('$set’ => array('books' => $bookData)

)
)

In both of our two previous code examples we did not add any keys to the array of book
data. This can be done, but it’s just as easy to allow Mongo to manage that data as if
it were a multidimensional array. Figure 8-6 is what the data of the code in Exam-
ple 8-11 will look like when it is displayed in Genghis.

Example 8-12 now can show a little more of what data is stored in our Mongo database.
It has just a few more lines of code added to what we saw in Example 8-9; here you can
see that we are referencing the automatic natural keys that were generated in the pre-
vious code that inserted the book detail information.

Example 8-12. MongoDB data find and display

$mongo = new Mongo();
$db = $mongo->library;
$authors = $db->authors;

$data = $authors->findone(array('authorid' => 4));

echo "Generated Primary Key: {$data[' id']}
";

echo "Author name: {$data['name']}
";

echo "2nd Book info - ISBN: {$data['books'][1]['ISBN']}
";
echo "2nd Book info - Title: {$data['books'][1]['title']
";

MongoDB | 227

4ff43ef45b9eTd300c 000007

{
_d {
$id: "4ff43ef45b9e7d300c000007"
i
authorid: 4,
books: [
{
ISBN: "0-553-29337-0",
title: "Foundation”,
pub_year: 1951,
available: 1
i
{
ISBN: "0-553-29438-5",
title: "I, Robot",
pub_year: 1950,
available: 1
i
{
ISBN: "0-517-546671",
title: "Exploring the Earth and the Cosmaos”,
pub_year: 1982,
available: 1
i
{
ISBN: "0-553-29336-2",
title: "Second Foundation”,
pub_year: 1953,
available: 1
}
l.
name: "lsaac Asimov”
}

Figure 8-6. Book data added to an author

The generated output of the above code looks like this (remember that arrays are zero

based):

Generated Primary Key: 4ff43ef45b9e7d300c000007
Author name: Isaac Asimov

2nd Book info - ISBN: 0-553-29438-5

2nd Book info - Title: I, Robot

For more information on how Mongo can be used and manipulated within PHP, look
here.

228 | Chapter8: Databases

